Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:
GeoTIFF of 3x3 m Relative Reflectivity for Buck Island, St. Croix, 2011, UTM 20N NAD83

1.2. Summary description of the data:
This image represents a LiDAR (Light Detection & Ranging) 3x3 meter resolution relative seafloor reflectivity surface for an area including and surrounding Buck Island Reef National Monument (BUIS), St. Croix in the U.S. Virgin Islands (USVI). The image’s horizontal coordinate system is NAD83 UTM 20 North. Fugro LADS, in collaboration with NOAA’s NOS/NCCOS/CCMA Biogeography Branch, the University of New Hampshire and the National Park Service, acquired bathymetry, relative seafloor reflectivity and hyperspectral imagery in St. Croix from 2/21 to 2/22/2011. Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 175 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 3x3 meter spot spacing and 200% seabed coverage. In total, 32.2 square kilometers of LiDAR relectivity were collected between 0 m and 49 m in depth. Environmental factors such as wind strength and direction, cloud cover, water clarity and depth influenced the area of data acquisition on a daily basis. The data was processed using the LADS Mark II Ground System and data visualization, quality control and final products were created using CARIS HIPS and SIPS and CARIS BASE Editor. All users should individually evaluate the suitability of this data according to their own needs and standards.

1.3. Is this a one-time data collection, or an ongoing series of measurements?
One-time data collection

1.4. Actual or planned temporal coverage of the data:
2011-02-21 to 2011-02-22

1.5. Actual or planned geographic coverage of the data:
W: -64.670039, E: -64.554066, N: 17.810112, S: 17.767262

1.6. Type(s) of data:
1.7. Data collection method(s):
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:
NCCOS Scientific Data Coordinator

2.2. Title:
Metadata Contact

2.3. Affiliation or facility:

2.4. E-mail address:
NCCOS.data@noaa.gov

2.5. Phone number:

3. Responsible Party for Data Management

Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:
NCCOS Scientific Data Coordinator

3.2. Title:
Data Steward

4. Resources

Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"): 
5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

*(describe or provide URL of description):*

Process Steps:

- 2011-01-01 00:00:00 - James Guilford and Scott Ramsay from Fugro LADS lead this mapping effort. Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 175 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 3x3 meter spot spacing and 200% seabed coverage. Green laser pulses are scanned beneath the aircraft in a rectilinear pattern. The pulses are reflected from the land, sea surface, within the water column, and from the seabed. The height of the aircraft is determined by the infrared laser return, which is supplemented by the inertial height from the Attitude and Heading Reference System and GPS height. Real-time positioning is obtained by an Ashtech GG24 GPS receiver combined with Wide Area DGPS (Differential Global Positioning System) provided by the Fugro Omnistar to provide a differentially corrected position. Ashtech Z12 GPS receivers are also provided as part of the Airborne System and Ground Systems to log KGPS (Kinetic Global Positioning System) data on the aircraft and at a locally established GPS (Global Positioning System) base station. | Source Produced: Raw Lidar Data (Citation: Raw Lidar Data)

- 2011-01-01 00:00:00 - The reflectivity of an LADS pulse is a measure of the amount of energy reflected from the seabed for each individual laser pulse at the wavelength of the laser, 532nm (green/blue). The basic difference between processing an ALB waveform for depth and for reflectivity is that depth processing focuses on the leading edge of the return waveform, whereas reflectivity requires integration of the entire return pulse. Each sounding is assessed for suitability. Dry soundings and soundings in very shallow water are not processed for reflectivity. Each sounding is normalized for the electronic gain applied to the photo multiplier tube to which the received laser energy is optically routed. The gain-normalized return waveform is then analyzed to determine energy returning from the seabed. Integration of the waveform from the seabed will produce a numerical value of reflectivity. To ensure that this value accurately and meaningfully describes variation in seabed reflectivity several parameters must be taken into consideration. Energy is lost from the pulses transmitted from the aircraft. These losses include the air/water interface and those through the water column, and any system specific losses such as optical filtering and receiver field of view. Reflectivity value, calculated for each pulse, is the ratio between the received energy
normalized for the losses described and the transmitted energy. Once a relative
reflectivity value has been calculated, further statistical cleaning to remove outliers
is completed. Because the dataset is of relative reflectivity rather than an absolute
value for each point, the entire dataset is scaled to ensure the full dynamic range is
used over the dataset. This scaling is applied over an entire survey area to ensure
dataset consistency (Collins et al. 2007). Collins et al. 2007 is available online here:
http://www.fugrolads.com/datasheets/Hydro_Intl_LiDAR_Seabed_Classification.pdf |
Source Produced: Processed Lidar Data (Citation: Raw Lidar Data)

5.1.1. If data at different stages of the workflow, or products derived from these
data, are subject to a separate data management plan, provide reference to other
plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented,
specifies the use of ISO 19115 and related standards for documentation of new data, and provides
links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?
No

6.1.1. If metadata are non-existent or non-compliant, please explain:
Missing/invalid information:
- 1.7. Data collection method(s)
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data
management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.2. Name of organization of facility providing data access
- 7.2.1. If data hosting service is needed, please indicate
- 7.3. Data access methods or services offered
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive
facility
- 8.4. How will the data be protected from accidental or malicious modification or
deletion prior to receipt by the archive?

6.2. Name of organization or facility providing metadata hosting:
6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:
https://inport.nmfs.noaa.gov/inport/item/38945

6.4. Process for producing and maintaining metadata
(describe or provide URL of description):
Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:

7.3. Data access methods or services offered:

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)

8.1.1. If World Data Center or Other, specify:

8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:

8.2. Data storage facility prior to being sent to an archive facility (if any):
National Centers for Coastal Ocean Science - Silver Spring, MD

8.3. Approximate delay between data collection and submission to an archive facility:

8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.